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Abstract

We propose to align the orientation of local feature de-
scriptors with the gravitational force measured with iner-
tial sensors. In contrast to standard approaches that gain
a reproducible feature orientation from the intensities of
neighboring pixels to remain invariant against rotation,
this approach results in clearly distinguishable descriptors
for congruent features in different orientations. Gravity-
aligned feature descriptors (GAFD) are suitable for any
application relying on corresponding points in multiple im-
ages of static scenes and are particularly beneficial in the
presence of differently oriented repetitive features as they
are widespread in urban scenes and on man-made objects.

In this paper, we show with different examples that the
process of feature description and matching gets both faster
and results in better matches when aligning the descriptors
with the gravity compared to traditional techniques.

1. Introduction

Many applications in the field of computer vision require
finding corresponding interest points in two or more images
of the same scene or object under varying viewpoints. Ex-
amples include stereo matching, camera pose estimation,
and object recognition. A common way, such as described
in [6], to gain such correspondences is to first extract in-
terest points that are expected to have a high repeatability,
such as corners or DoG extrema, from the individual im-
ages. The second step is then to create a local descriptor
for each feature based on the intensities of its neighboring
pixels. This enables its comparison and therefore its match-
ing with its corresponding feature in an other image. The
two main requirements for a good descriptor are distinctive-
ness, i.e. feature points corresponding to two different phys-
ical points result in different descriptors, and invariance to
changes in view points and directions, illumination and im-
age noise. This is to ensure that features corresponding to
the same physical point in different images result in close
descriptors with respect to a certain similarity measure.
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To address the invariance to perspective distortions re-
sulting from changes in the camera rotation, an image trans-
formation is generally used to normalize the pixels in the
region around a feature point. The descriptor is then com-
puted based on this normalized region. It is critical that the
normalized region for the same physical point in two images
under different viewing angles is similar. The normalization
is usually based on a feature orientation computed from the
pixel intensities in the neighborhood of the feature point.

This way of orientation assignment results in problems
in the presence of congruent or near-congruent features in
different orientations as shown in figure 1 at the example of
the corners of a window. The regions around the four cor-
ners that correspond to four different physical points would
be ideally identical after normalization as shown in the left
column resulting in indistinguishable descriptors.

Figure 1. Schematic sketch of the effect of gravity-aligned feature
descriptors (right) compared to regular techniques (left).

Increasingly more mobile devices are equipped with in-
ertial sensors. While mobile phones already provide inter-
faces that make storing the gravity vector with each camera
image very easy, digital cameras at least store a coarse ori-
entation in steps of 90° with digital photos using the EXIF
format which might support more precise measures in the
future. As the orientation of all static objects with respect
to the gravity is constant, it is worth evaluating using this
orientation as a reference in the feature description process.



1.1. Contribution

This paper presents a new approach for creating lo-
cal visual feature descriptors suited for static and close
to upright surfaces. It outperforms standard approaches
as it overcomes ambiguities resulting from congruent or
near-congruent features with different orientations with-
out constraining the camera movement. The result is an
improved precision-recall characteristic. In addition, we
present means to speed-up both the descriptor computation
and the process of matching two or more sets of features.

The proposed technique can be applied to any existing
feature descriptor based on a normalized region around the
feature point and is suitable for many applications including
image classification, 6-DoF camera pose tracking, and 3D
scene reconstruction.

2. Related work

A variety of local feature descriptors exist, wherein a
good overview and comparison is given in [7]. They all
describe a feature point with a multi-dimensional vector as
a function of the pixel intensities in a spatially normalized
neighborhood region around the feature point. The spatial
normalization is based on a feature orientation which again
depends on pixel intensities in the neighborhood.

Bay et al. [2] showed that omitting the spatial normal-
ization for Upright-SURF, outperforms regular SURF de-
scriptors in terms of discriminative power while at the same
time, the user is forced to keep the camera in an upright
orientation which limits the field of possible applications.

Recently, Baatz et al. [1] described an approach to urban
location recognition where they identify vanishing points in
camera images and use these to rectify image parts that be-
long to a planar surface. They are then able to use upright
feature descriptors on the rectified images that are aligned
with the gravity without limiting the camera orientation.
However, their approach is strongly dependent on the pres-
ence of many vertical and horizontal lines in the camera
image to identify vanishing points which clearly limits the
suitable environments to urban outdoor scenes.

Inertial sensors are known to deliver more stable orienta-
tion data than vision-based tracking which motivates hybrid
inertial-vision tracking, e.g. [10] fuses inertial orientation
data with a 6DoF pose gained from feature tracking.

In [4], a gyroscope attached to a camera is used to predict
the current position of feature points that have been used in
the previous frame. This enables the KLT feature tracking
to cope with bigger optical flows without losing track.

To improve feature matching in catadioptric images
Bazin et al. [3] measure the relative change in orientation
of the camera between two images using a gyroscope and
warp the second image to be aligned with the first one be-
fore matching SIFT features of the two images. They do not
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use the knowledge of the two images being aligned in the
SIFT computation which explains why they could not re-
port on any significant improvement when matching these
highly rotational invariant feature descriptors.

Bleser and Stricker [8] present sensor fusion algorithms
to predict the appearances of features by rendering a 3D
model of the scene they aim to track.

The gravity measured with inertial sensors is used in [5]
to automatically rectify reference images of planar areas on
the ground plane or vertical surfaces. During tracking they
do however not use the inertial sensor information anymore.

3. Gravity-aligned local feature descriptors

A feature descriptor is generally built such that two fea-
tures corresponding to the same physical point in different
images result in close descriptors with respect to a similar-
ity measure. While two features corresponding to two dif-
ferent physical points are supposed to result in distinct de-
scriptors. Often, the descriptor computation is composed of
two steps namely spatial normalization of the region around
the feature and the actual computation of the descriptor as
a function of the normalized region [0]. Other advanced
methods exist, e.g. Hessian-Affine regions [7], but in the
simplest case the normalization only consists of an in-plane
rotation according to the feature orientation. This orienta-
tion is defined based on pixel intensities, for instance based
on the direction of the strongest gradient in a limited region
around the feature. In case there are multiple dominant gra-
dient directions the normalization and following description
is carried out for all of them. The actual descriptor is fi-
nally a function of pixel intensities in the normalized region,
usually based on histograms, that gives a multi-dimensional
vector which will be referred to as feature descriptor.

3.1. Proposed feature orientation assignment

We align the orientation of local feature descriptors with
the projection of the gravitational force in the coordinate
system of the camera image. In contrast to standard ap-
proaches that gain a reproducible feature orientation from
the intensities of neighboring pixels to remain invariant
against camera rotation, our approach results in clearly dis-
tinguishable descriptors for congruent and near-congruent
features in different orientations.

Figure 1 illustrates a window as an example of a real
static object with upright surfaces. The camera of the left
mobile phone captures the window and the four corners act
as feature points for which a descriptor is computed. Due
to invariance to rotation, as schematically illustrated with
the normalized regions of the features in the left column,
an ideal feature descriptor would describe these features in
exactly the same way making them indistinguishable. In a
real world setup, the descriptors will not be identical but



very similar and therefore virtually indistinguishable. Con-
sequently, the probability that two features are matched and
considered to correspond to the same physical point (even
though they in fact correspond to two different physical
points) is high for such urban scenes. Too many mismatches
may result in a failure of systems using feature descriptors.

The phone on the right in figure 1 is equipped with a
3-axis-accelerometer that provides the gravity vector ex-
pressed in the device coordinate system as it is increasingly
more the case for recent mobile phones. The projection
of this vector in camera coordinates acts as the orientation
of the four feature descriptors of the corners of the win-
dow. As illustrated in the right column the normalized re-
gions around the four features are clearly distinct resulting
in distinct feature descriptors. Thus, the proposed method
reduces the probability of mismatches.

3.2. Approaches to take advantage of the gravity

The local orientation o; of a feature computed from the
intensities of neighboring pixels is usually computed such
that it provides the same normalized region at any view-
point and view direction. We propose three ways to take
advantage of combining it with the global orientation o, as
the direction of the gravity, cf. figure 2 a.

Figure 2. Each feature point has a local (red) o; and global (blue)
o4 orientation (a). Using the local orientation for descriptor align-
ment (b) leaves the relative global orientation as part of the de-
scriptor. Alignment with the global orientation (c) allows to enrich
the descriptor with the relative local orientation.

Regular feature descriptors with relative gravity orien-
tation In case the global orientation corresponding to the
gravity measurement o, is t00 coarse, we propose to use
o0; as done in regular SIFT and additionally store the rela-
tive global orientation: oy = o4 — o for every feature as
depicted in figure 2 b. Note that oy; is theoretically con-
stant and independent of the camera rotation. Similar to the
sign of the Laplacian in SURF [2], we propose to use o4
as a part of the descriptor and give it a higher priority. We
use it to preclude the comparison of the descriptors for fea-
tures whose relative orientation o, differs significantly. In
fact, features with very different oy do not correspond to
the same physical point. By comparing only features with a
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similar o4;, the matching process is not only improved but
also it can be speeded up significantly. In the evaluation
section 4, this technique will be referred to as regular fast.

Gravity-aligned feature descriptors One other possibil-
ity is to use the global orientation o, of the feature instead
of the local orientation o; as shown in figure 2 c. This
allows not only to improve the matching results, but also
saves computational time since the computation of o; can
be skipped. This approach will be referred to as GAFD.

Gravity-aligned feature descriptors with relative local
orientation If the orientation of the gravity o, can be con-
sidered accurate, we propose to use o4 as orientation for the
region normalization and store oy with every feature. In
case there are multiple dominant orientations o; they are all
stored relatively to the gravity o,. Here again, in the match-
ing process, only the descriptors of those features that have
at least one similar relative orientation oy need to be com-
pared, cf. figure 2 c. This allows a faster matching with
an improved accuracy thanks to gravity-alignment. We will
call this approach GAFD fast in section 4.

4. Evaluation and experimental results

This section reports on evaluations measuring the effect
of gravity-aligned feature descriptors (GAFD) compared to
regular feature descriptors both on the low-level matching
performance and its impact when used in a higher level ap-
plication performing image recognition on a mobile phone.

4.1. Matching precision for upright surfaces

In order to measure the impact of GAFD on the matching
precision, we carried out experiments on two different mo-
bile phones, the iPhone 3GS and the iPhone 4, providing a
different level of gravity measurement accuracy. While the
iPhone 3GS has a built-in 3-axis accelerometer the iPhone
4 has additionally a 3-axis gyroscope. We quantified the ac-
curacy of the measured gravity for both devices based on
40 pictures of three vertical lines and the error distribution
shows that the iPhone 4 (& —0.63° £0.82°) provides signif-
icantly better results than the iPhone 3GS (22.8° + 3.67°).

In the following experiments, we use the four planar tar-
get images that are depicted in figure 3.

Dartboard Its 20 radial sections make it a good example
for many congruent features in different orientations.

Facade This urban scene has many repetitive structures
both in different orientations and the same orientation.

Butterfly This is a natural (not man-made) scene.

Isetta This target represents man-made objects that do not
have a large amount of repetitive features.



Figure 3. The four target images used in the matching evaluation.

A print-out of each target image (213mm X 160mm) has
been attached onto a planar surface in an upright orienta-
tion using an electronic water level. Three sequences of
eight photos each have been taken of each target. In the
first sequence, the mobile phone underwent strong rotations
about the viewing axis (roll) and moderate rotations about
the other axes while in the second sequence, the camera
movement mainly consists of pitch rotations and in the third
sequence yaw rotations dominate. Figure 5 shows a subset
of the sequences in the top right. In addition, one picture
of each target is taken from a straight perspective to act as
reference image in the evaluation. As all photos have been
taken with the phone in hand, some of them contain blur
due to defocus or motion. With each picture, we store the
measurement of the gravity vector at the time it was taken.
All following computations are done offline on a PC.

First, we removed the effect of lens distortions from all
images followed by resizing all query images to a resolu-
tion of (640 x 480) pixels for further processing. The four
reference images have been manually rectified and resized
to a resolution of (320 x 240) pixels which approximately
matches the size the targets have in the query images.

The publicly available implementation of SIFT features
in VLFeat [9] has been used to extract regular SIFT fea-
ture descriptors from all the images while a modified ver-
sion that in addition takes the 3D gravity vector as input
is used to extract gravity-aligned SIFT feature descriptors.
In contrast to regular SIFT that describes a feature in multi-
ple orientations in case there are multiple dominant gradient
directions, the gravity-aligned version only describes each
feature point once with the orientation of the projection of
the measured gravity at the position of the feature point.

For each sequence of images the matching stage aims to
find for each query feature extracted from a query image
the corresponding feature in the reference image. There-
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Figure 4. Correct (green) and false (red) feature matches between
a query (left) and reference (right) image using SIFT regular (top)
and SIFT GAFD (bottom) resulting in 15% more correct matches.

fore, the nearest neighbor, i.e. the reference feature with the
descriptor closest to the descriptor of the query feature is
found using exhaustive search.

The ground truth to classify matches to be correct or false
has been generated by manually defining the position of the
four corners of the target in each query image. Based on
these correspondences, a homography is computed for each
query image that maps each point on the target from the
query image to the reference image. For each match, this
homography is used to warp the position of the query fea-
ture to the reference image. If the Euclidean distance be-
tween the warped position and the position of the matching
reference feature is below a chosen threshold of 6 pixels,
the match is classified as correct. Otherwise, it is consid-
ered wrong, as illustrated in figure 4 in red.

As in [7], we compare 1 — precision vs. recall where

# false matches
f£correct matches + # false matches

1 — precision =

F#correct matches

and recall = .
#correspondences

We measure the precision-recall characteristics of four
different approaches, namely SIFT regular and the three
approaches described in 3.2: SIFT GAFD, SIFT regular
fast and SIFT GAFD fast. In the latter two techniques,
we avoid matching features whose relative orientations o
differ by more than 0.5 radians which corresponds to ~ 29°.
Assuming equally distributed feature orientations this saves
around 84% of the descriptor comparisons needed.

The samples used to plot the precision-recall curves in
figure 5 were gained using different subsets of all matches
whose descriptors’ distance is below a threshold ¢ for dif-
ferent ¢. Only the results for the iPhone 4 are shown since
the behaviour is very similar on the iPhone 3GS although
the sensor accuracy differs significantly.
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Figure 5. The precision-recall plots for the results on the iPhone 4 clearly show that all three proposed techniques outperform regular SIFT.

In nearly all cases, for all targets and for all kinds of cam-
era movement, SIFT GAFD performs best closely followed
by SIFT GAFD fast. Also, constraining the nearest neigh-
bor search for regular SIFT features (SIFT regular fast)
increases performance but does not give as good results as
SIFT GAFD. As expected, the impact of gravity-alignment
is particularly high for the dartboard target as it has many
congruent features in different orientations. It might be sur-
prising that the impact of GAFD is stronger in the pitch and
yaw sequences than in the roll sequences. The reason is that
the orientation assignment of SIFT is more invariant to roll
rotations than pitch and yaw rotations as roll rotations do
not change which physical points around the feature point
are considered in the orientation assignment.

Considering both matching precision and computational
time, SIFT GAFD fast gives the best results as the preci-
sion is similar to SIFT GAFD while it saves around 84%
expensive descriptor comparisons.

4.2. Performance analysis for non-upright surfaces

While the concept described in this paper is designed to
be used with vertical surfaces, this section evaluates how
GAFD performs if the surfaces where features are extracted
are not vertical. Therefore, the butterfly target shown in fig-
ure 3 has been attached to a tiltable surface at different ori-
entations that were measured with an electronic water level.
For each orientation, we took three images at different roll
orientations of the camera keeping the camera image plane
approximately parallel to the plane of the image target.

Figure 6 shows on the left the precision-recall charac-
teristic for different angles where 90° represents a vertical
surface. The right plot displays the recall for a fixed (1-
precision) of 0.4 where it is visible that in this configura-
tion SIFT GAFD outperforms SIFT regular in the range of
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Figure 6. GAFD does not only work for vertical surfaces.

90° £ 60°. Obviously, the advantage of gravity-alignment
decreases more rapidly with the plane orientation differing
from 90° under very steep yaw camera angles.

4.3. Object recognition on a mobile device

There are many possible applications for the GAFD such
as Augmented Reality and image classification on mobile
phones (see figure 7). In this paper, we measure the ef-
fect of GAFD on a higher level in a mobile museum guide.
The user takes an image of an artwork, image recognition is
performed on the mobile phone and information about the
particular artwork is being displayed.

To this end, we randomly chose 100 artworks (paint-
ings, drawings, photos and sculptures) in the Pinakothek
der Moderne museum in Munich and took five pictures from
different angles of each artwork. These pictures were stored
along with the corresponding 3D gravity vector. For each
artwork, we chose one picture to be the reference image
while the other four images are used as query images. In
contrast to the experiments shown before, here, we use soft-
ware that is optimized to run on mobile phones in a rea-
sonable amount of time. All pictures have been resized to
(320 x 240) pixels and instead of expensive SIFT feature
point extraction and descriptors, we use a fast feature de-



Figure 7. Using GAFD for object recognition (left) and Aug-
mented Reality (right) on mobile phones.

tector and a 48-dimensional descriptor. The local orienta-
tion assignment is based on the strongest gradients similar
as in SIFT. For each reference image, we extract 200 fea-
tures and store them as reference features along with the ID
of the artwork they belong to. From each query image, we
also extract 200 features based on which we aim to detect
the artwork by comparing the query features with the refer-
ence features. Since nearest neighbor search for each query
feature in the set of 200 x 100 = 20000 reference features
is too expensive on a mobile device, we use the Best-Bin-
First algorithm [6] to find an approximate nearest neighbor
instead. After finding it for each query feature, the detec-
tion result is eventually the ID that appears most frequently
in the set of matched reference features. The entire process
has been carried out both with regular and GAFD feature
descriptors. Table 1 shows the percentage of correctly rec-
ognized objects in several subsets of the dataset of different
sizes. We observe the detection rate increasing on average
by over 15% when aligning the feature orientation with the
gravity. This clearly shows an improvement over standard
approaches in a real world application.

5. Conclusions and outlook

The evaluations in the last section, clearly shows the im-
provement of GAFD both on the precision of matches and
in an application on a mobile phone. The proposed method
outperforms classical approaches without introducing any
drawbacks since even the computational costs are reduced.
Of course, the field of applications for GAFD is limited to
the presence of an inertial sensor and does not work for
features on surfaces that are parallel to the ground plane
or close to it. However, we believe that there is a variety
of applications where GAFD are useful. Increasingly more
devices are equipped with inertial sensors and many tasks,
particularly outdoor self-localization, rely mainly on fea-
tures that are located on facades, i.e. vertical surfaces.

Our regular fast approach can also be applied to infor-
mation retrieval on image databases, such as flickr, storing a
coarse orientation with respect to gravity in their EXIF data.

The concept of aligning feature descriptors with a com-
mon coordinate system is not limited to the gravity as de-

objects ‘ recogn. rate regular | recogn. rate GAFD

40 76.88% 90.00%
60 68.33% 84.58%
80 70.94% 86.56%
100 71.25% 87.75%

Table 1. GAFD improves the recognition rates of a mobile guide.

scribed in this paper but has a variety of possible imple-
mentations. Many mobile phones include a compass that
indicates the direction of the north. Combining this with the
gravity results in the full 3DoF orientation in absolute world
coordinates. This again allows to align features with any
absolute orientation in world space and overcomes the con-
straint that surfaces must not be parallel to the ground plane.
In outdoor self-localization tasks, we envision to align fea-
tures with multiple reference orientations and choose the
appropriate alignment online based on the device orienta-
tion. Besides sensors that provide an absolute orientation
any tracking system attached to a camera providing relative
transformations between the individual camera images can
be used to align feature descriptors with a common orien-
tation in applications that do not require any offline learned
model of the environment, such as 3D reconstruction.
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