
EUROGRAPHICS 2008 / K. Mania and E. Reinhard Short Papers

Improving Interaction Performance for Ray Tracing

Daniel Kurz Christopher Lux Jan P. Springer Bernd Fröhlich

Bauhaus-Universität Weimar

Abstract
We have developed an approach for improving the performance of object manipulation in ray tracing systems.
We assume that users alternate between navigating the scene and manipulating objects in the scene. We divide
the scene in objects currently manipulated by the user and the non-interactive rest. Once a user stops navigating,
we compute and store the first order reflections for the non-interactive objects. In a composition step only the
manipulated objects need to be fully ray traced, while the stored reflections of the rest of the scene have to be tested
only against the manipulated objects. In an initial evaluation we found that this approach significantly improves
frame rates during object manipulation—and thus increases interaction performance.
Our approach directly extends to refraction and shadow rays. It could also be used for further ray generations
beyond the first order effects, but the speedup would strongly depend on the actual scene and it would probably be
less significant. Our approach is independent of the underlying spatial data structure and it neither reduces visual
quality nor does it introduce visual artifacts—within its constraints.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms; I.3.7
[Computer Graphics]: Ray Tracing; I.3.7 [Computer Graphics]: Virtual Reality

1. Introduction

Real-time ray tracing has recently become a feasible render-
ing method for virtual reality applications. While this render-
ing method can generate excellent image quality considering
a number of optical effects (e. g. reflections, refractions, and
shadows), the interactivity is often quite limited. However,
virtual reality applications often require the interactive ma-
nipulation of objects, which may change their position and
orientation from frame to frame depending on user input.
This is still a challenge for ray tracing systems—in particular
if they are supposed to run on a single computer.

Springer et al. [SBW∗07] observed that users of projection-
based virtual reality applications can often cope with lower
frame rates for navigation tasks than for object manipulation
tasks. As a consequence they separated the scene into a set of
currently manipulated objects and the rest. Each set of objects
is rendered on a different GPU, the partial images are digitally
composed in a Sort-Last manner, and the result is displayed.
The set of interactive objects is typically rendered at much
higher frame rates than the remainder of the scene. Thus, user
interaction is incorporated with much lower latency than with
a conventional single-frame rate rendering approach.

(a) (b) (c)

Figure 1: Example scene with multiple objects. The left door of the
car is currently manipulated (a). The reflections are decomposed into
reflection of the scene in the left door (b) and the reflection of the left
door in the rest of the scene (c).

Their original multi-frame rate approach was developed
for rasterization-based rendering. It extends also to ray cast-
ing, but for ray tracing it is not immediately applicable due to
the light interaction between interactive objects and the rest
of the scene. Here we report on an initial idea to use an ap-
proach similar to multi-frame rate rendering for the first order
reflections in a limited ray tracing system. The scene is also
divided into two sets: the set of currently manipulated objects
O and the set R containing the rest of the scene (cf. figure 1).
The specular reflections between these two sets can be decom-
posed into reflections of R in O and vice versa (cf. figure 1b

© The Eurographics Association 2008.



D. Kurz, C. Lux, J. P. Springer, and B. Fröhlich / Improving Interaction Performance for Ray Tracing

and 1c). We recompute the reflections within the objects of R
whenever the view point changes. As long as no view point
change occurs, we use these pre-computed reflections as the
basis for interactively ray tracing the scene. Because typically
only a small subset of the scene is manipulated, the interactiv-
ity of our ray tracing system is significantly improved during
object manipulation.

2. Related Work

In a user study Springer et al. [SBW∗07] showed that 3D
task performance was similar for single-frame rate render-
ing of the whole scene at 30 Hz compared to multi-frame
rate rendering at 10/30 Hz, i. e.10 Hz for rendering the static
scene parts while rendering manipulated objects at 30 Hz.
In [SLRF08] Springer et al. showed how to employ deferred
shading [DWS∗88] based on G-buffers [ST90], containing
per-pixel information of geometric properties such as depth
values or normal vectors, to achieve interactive frame rates
for effects affecting the entire scene (e. g. manipulation of
lights).

Real-time ray tracing approaches for the visualization of
complex static scenes employ PC clusters [WSB01] and re-
cently single workstations [DWS04]. Recent work on ray
tracing of animated and interactive scenes focuses on fast
to build acceleration structures [WMG∗07]. Wald [Wal07]
shows how to rebuild a bounding volume hierarchy (BVH) for
the entire scene on a per-frame basis. Yoon et al. [YCM07]
present a technique for locally restructuring parts of a BVH
instead of rebuilding the entire structure, which works well if
only small portions of the scene are manipulated. In contrast,
our approach reduces the number of rays and the number of
objects that need to be considered during object manipulation.

3. Description of Rendering Approach

Multi-frame rate rendering is a parallel rendering technique
which decomposes a scene into user-manipulated elements
and the rest of the scene. Using digital composition the results
of the two frame buffer images are merged into the final
rendering. The manipulated objects may change throughout
the use of the application (e. g. users may first manipulate the
door of a car, then a car seat, and later the hood). We have
developed a ray tracing approach that allows us to separately
render the currently manipulated objects and the rest of the
scene and to efficiently combine the partial images including
correct inter-reflections between the elements in both images.

The proposed algorithm is outlined for first order reflec-
tions. The scene S consists of a set of objects, which is de-
composed into the set of currently manipulated objects O and
the set R containing the rest of the scene. The algorithm splits
the rendering process into three logical stages: pre-computing
reflections within the set R, updating reflections and active
objects with respect to the set O, and final compositing. We
assume that users alternate between navigating the scene

and manipulating objects. During navigation, we use regular
ray tracing. Once navigation stops the pre-computation stage
is performed once while the other stages are updated each
frame.

The final composition stage combines two frame buffer
images I(R) and I(O) of the set R and the set of manipulated
objects O. These images contain color and position informa-
tion of primary ray intersections. The final color is computed
by comparing the images pixel-wise, thereby determining
which associated intersection is closer to the viewer. The
color components of both frame buffer images must contain
proper reflections from the complementary parts of the scene
to generate correct visual results. This is achieved by tracing
secondary rays for the whole scene while rendering the ac-
tive objects into I(O). Because the pre-computation of the
static parts of the scene only considers the scene without
the active objects, the generated image I(R) does not show
reflections of O. To generate an image containing the proper
reflections we employ a technique derived from deferred
shading. During pre-computation a series of G-buffers is con-
structed containing information about primary and secondary
ray intersections such as positions, normal vectors, and ma-
terial information. This information is later used to compute
the final shading of I(R) by tracing secondary rays from the
pre-computed positions for the image of the set R. The idea is
that during the update stage only intersections with the active
objects O need to be detected. This operation also outputs G-
buffers containing information for the updated secondary ray
intersections. The image I(R), containing proper reflections,
is derived from the pre-computed and updated G-buffers by
a merge operation. The positions of the secondary ray in-
tersections are compared and, for intersections closer to the
reflecting surface, the proper shading is calculated. After this
operation I(R) and I(O) show correct reflections of the com-
plementary parts of the scene and can be digitally composed
into the final image.

Our method also applies to refraction and shadow compu-
tations. Extending the G-buffers by additional components
allows for storing intermediate results from the refraction and
shadow ray traversals. During the merge operation before
the compositing stage these additional components have to
be taken into account for the generation of I(R) to include
proper refractions and shadows.

4. Example Implementation

We implemented the proposed algorithm with an in-house
developed GPU-based real-time ray tracing framework. The
prototype is build upon regular grids as the main acceleration
structure and uses OpenGL shader programs to implement
the ray traversal. Each potentially active object is stored in
a separate grid for ray-intersection acceleration [PBMH02].
These grids are additionally stored in a global grid, which is
locally rebuild after each interaction. This allows for trans-
forming parts of the scene without fully rebuilding global

© The Eurographics Association 2008.



D. Kurz, C. Lux, J. P. Springer, and B. Fröhlich / Improving Interaction Performance for Ray Tracing

(a) Position (b) Distance

(c) Normal (d) Material

Figure 2: G-buffer contents from the pre-computation pass for the
reflected surfaces of the static scene.

acceleration structures. Upon traversal of a particular grid
rays are transformed into the local grid coordinate system for
intersection testing. For efficiency reasons rasterization and
shadow mapping are used to replace primary ray intersection
and shadow ray traversal computations. This divides the ray
tracing algorithm into multiple rendering passes: shadow map
creation, primary ray rasterization, and tracing of reflection
rays. The primary ray rasterization pass uses multiple render
targets (MRT) to produce G-buffers for origins and directions
of the reflection rays as well as for local lighting. The output
buffers are used as input to the final ray tracing pass.

We integrated our algorithm using modified rasterization
and ray tracing passes. Instead of directly calculating lighting
coefficients we store the necessary information in additional
render targets. The pre-computation stage generates the fol-
lowing G-buffer portions for first order reflections (as illus-
trated in figure 2a to 2d): position of the ray intersection with
R, distance of the intersection from the reflecting surface,
normal vector, and material parameters.

(a) Composite (b) Final

Figure 3: Reflections of the static scene and the active object are
composed (a) and lead to the final image (b).

First, in the update stage the shadow maps are updated
using the manipulated scene. Then the active scene objects
O are rendered using the unaltered ray tracing algorithm re-
sulting in the frame buffer image I(O). Simultaneously a
mask is generated to distinguish between fragments which
belong to R and O. Based on this mask pre-computed reflec-
tions are updated only for visible fragments corresponding
to R. This update results in similar G-buffer output as the
pre-computation stage but shows only potential reflections of
the active objects. Based on the distances contained in the pre-
computed and updated G-buffers the proper reflections and
final shading are computed. The result is stored in the frame
buffer image I(R). Finally, the composition stage merges the
frame buffer images I(O) and I(R) to the final output image.
Figure 3a illustrates the updated reflections for the static parts
of the scene in green and the active objects in blue while the
unaltered pre-computed reflections are shown in red.

5. Discussion

We conducted a brief performance evaluation to examine the
impact of the proposed method. For the evaluation we used
an Intel Core2 Duo 2.4 GHz workstation with 2 GiB RAM
and an NVIDIA GeForce 8800 GTX graphics card driving a
projection-based display installation. The test scene consisted
of four objects and is shown in figure 4. Using a pick ray
the user was able to select as well as translate and rotate
single objects. The test was performed multiple times under
different view points. Figure 4 illustrates the results measured
in frames per second. The gray bar represents the performance
using the original ray tracing approach. The results show that
our proposed method results in a significant performance
improvement during the manipulation of single objects.

The achievable speedup for scene manipulations depends
on the model complexity and the size of the projection of
the active objects. The screen-projection size determines the
amount of rays that must be traced for the computation of
I(O) while the geometric complexity determines the overall

10

20

30

25

35

15

5

0

fp
s

View 1 View 2 View 3

regular ray tracing

selected door

selected hood

selected windows

Figure 4: Performance for object manipulation under different view
points. Note, that the frame rates while selecting the window (orange
bars) are particularly high due to the fact that the window is not
reflective.

© The Eurographics Association 2008.



D. Kurz, C. Lux, J. P. Springer, and B. Fröhlich / Improving Interaction Performance for Ray Tracing

cost of ray tracing the active objects during the update stage.
It is important to note that due to the initial pre-computation
of the static scene parts a short lag is introduced before the
manipulation can start. This initial lag amounts to at most
one frame of the regular ray tracing algorithm.

A large memory overhead is introduced by using the pro-
posed G-buffer approach. The pre-computation stage gener-
ates at least six buffers holding information about primary
and reflection ray intersections, i. e. positions, normal vec-
tors, and material information in each case. At the same time
the update stage introduces at least another three G-buffer
components to hold the reflection information. For temporar-
ily storing the intermediate frame buffer images I(R) and
I(O) two additional frame buffers are required. Extending the
described technique to refractions and shadows will further
multiply the memory requirements.

The proposed method handles only first order reflections,
refractions and shadows. For an arbitrary number of ray gen-
erations, the pre-computation as wells as the update stage
have to generate deeper G-buffers containing information
about these ray intersections. When merging the results pre-
computed intersections can be used until an intersection with
an active object is found. Further ray intersections must be
updated using regular ray tracing against the whole scene.

6. Conclusions and Future Work

We presented an approach that improves interactive object
manipulation in ray tracing systems. By dividing the scene
into objects currently under user manipulation and a static
remainder we are able to pre-compute reflections for the
non-interactive scene part. In a composition step only the
manipulated objects need to be considered, which allows for
displaying the final image at interactive frame rates without
reducing visual quality or introducing visual artifacts.

The extension of the proposed method to refractions and
shadows introduces a large memory overhead. With further
generalization to higher ray-recursion depths the advantage
of the pre-computed effects diminishes due to additional
computational overhead. We are exploring ways to reduce
both memory and computational costs to allow for a more
general application of the algorithm.

We are currently investigating the adoption of a multi-GPU
solution, as described by Springer et al. [SLRF08], where one
GPU is dedicated to the pre-computation pass while the other
GPU produces the final image from previously pre-computed
G-buffers and the current user interaction. Although the over-
head for buffer transfer between GPUs is considerable it
would allow for view point manipulation at the rate of pre-
computing the static scene parts. User navigation can be
further improved by predicting view point changes using
depth-image warping, an image-based rendering technique
to generate new views from reference images considering
per-pixel color and depth information (e. g. [MMB97]).

References

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B.,
DUFFY C., HUNT N.: The Triangle Processor and Normal
Vector Shader: A VLSI System for High Performance
Graphics. In Computer Graphics (Proceedings of ACM
SIGGRAPH 88) (1988), vol. 22(4), ACM, pp. 21–30.

[DWS04] DIETRICH A., WALD I., SLUSALLEK P.: In-
teractive Visualization of Exceptionally Complex Indus-
trial CAD Datasets. Technical Sketch, ACM SIGGRAPH,
2004.

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.:
Post-Rendering 3D Warping. In SI3D ’97: Proceedings of
the 1997 Symposium on Interactive 3D Graphics (1997),
ACM, pp. 7–16.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HAN-
RAHAN P.: Ray Tracing on Programmable Graphics Hard-
ware. In Proceedings of ACM SIGGRAPH 2002 (2002),
Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, pp. 703–712.

[SBW∗07] SPRINGER J. P., BECK S., WEISZIG F., REIN-
ERS D., FROEHLICH B.: Multi-Frame Rate Rendering
and Display. In Proceedings IEEE Virtual Reality 2007
Conference (2007), IEEE, pp. 195–202.

[SLRF08] SPRINGER J. P., LUX C., REINERS D.,
FROEHLICH B.: Advanced Multi-Frame Rate Render-
ing Techniques. In Proceedings IEEE Virtual Reality 2008
Conference (2008), IEEE. accepted.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible Ren-
dering of 3-D Shapes. In Computer Graphics (Proceedings
of ACM SIGGRAPH 90) (1990), vol. 24(4), ACM, pp. 197–
205.

[Wal07] WALD I.: On fast Construction of SAH based
Bounding Volume Hierarchies. In Proceedings of the
2007 Eurographics/IEEE Symposium on Interactive Ray
Tracing (2007), IEEE, pp. 33–40.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOU-
LOS S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.:
State of the Art in Ray Tracing Animated Scenes. In STAR
Proceedings of Eurographics 2007 (2007), Eurographics,
pp. 89–116.

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Inter-
active Distributed Ray Tracing of Highly Complex Models.
In Proceedings of the 12th Eurographics Workshop on
Rendering (2001), Eurographics, pp. 277–288.

[YCM07] YOON S.-E., CURTIS S., MANOCHA D.: Ray
Tracing Dynamic Scenes using Selective Restructuring.
In Proceedings of the 2007 Eurographics Symposium on
Rendering (2007), Eurographics, pp. 73–84.

© The Eurographics Association 2008.


